A pr 2 00 9 LIMITS OF CALABI - YAU METRICS WHEN THE KÄHLER CLASS DEGENERATES

نویسنده

  • VALENTINO TOSATTI
چکیده

We study the behaviour of families of Ricci-flat Kähler metrics on a projective Calabi-Yau manifold when the Kähler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy functionals for Calabi-Yau metrics

We identify a set of “energy” functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, that are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We test this strategy using the “algebraic” metrics (metrics for which the ...

متن کامل

Contents 1 Introduction 5 2 Preliminaries 9 2 . 1 Basics on Complex Manifolds

The Strominger system is a system of partial differential equations describing the geometry of compactifications of heterotic superstrings with flux. Mathematically it can be viewed as a generalization of Ricci-flat metrics on non-Kähler Calabi-Yau 3folds. In this thesis, I will present some explicit solutions to the Strominger system on a class of noncompact Calabi-Yau 3-folds. These spaces in...

متن کامل

un 2 00 7 Remarks on the existence of bilaterally symmetric

The study of extremal Kähler metric is initiated by the seminal works of Calabi [4], [5]. Let (M, [ω]) be a compact Kähler manifold with fixed Kähler class [ω]. For any Kähler metrics g in the fixed Kähler class [ω], the Calabi energy C(g) is defined as C(g) = M s 2 dµ, where s is the scalar curvature of g. The extremal Kähler metric is the critical point of the Calabi energy. The Euler-Lagrang...

متن کامل

ADIABATIC LIMITS OF RICCI - FLAT KÄHLER METRICS 3 from

We study adiabatic limits of Ricci-flat Kähler metrics on a Calabi-Yau manifold which is the total space of a holomorphic fibration when the volume of the fibers goes to zero. By establishing some new a priori estimates for the relevant complex Monge-Ampère equation, we show that the Ricci-flat metrics collapse (away from the singular fibers) to a metric on the base of the fibration. This metri...

متن کامل

The Α-invariant on Cp#2cp2

The global holomorphic invariant αG(M) introduced by Tian [6], Tian and Yau [5] is closely related to the existence of Kähler-Einstein metrics. In his solution of the Calabi conjecture, Yau [11] proved the existence of a KählerEinstein metric on compact Kähler manifolds with nonpositive first Chern class. Kähler-Einstein metrics do not always exist in the case when the first Chern class is posi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009